T

- 1. $f(x) = 0 \implies x^* = 0, \pm \frac{1}{2} \sqrt{r(1-r)}$, the last two defined for $0 \le r \le 1$.
- 2. f'(0) = r(r-1) \Rightarrow stable for $0 \le r \le 1$ otherwise unstable. $f'(\pm \frac{1}{2}\sqrt{r(1-1)}) = 2r(1-r)$, unstable for $0 \le r \le 1$.
- 3. Fixed point $x^* = 0$ bifurcates at $r_1 = 0$ and $r_2 = 1$ by Subcritical pitchfork bifurcation.
- 4. From below: Fixed point $x^* = 0$ (unstable) splits into to unstable point at $r_1 = 0$ and becomes itself stable. From above: Fixed point $x^* = 0$ (unstable) splits into to unstable point at $r_2 = 1$ and becomes itself stable. The two unstable branches connect in an ellipse.

II.

- 5. Fixed point: (0,0). $\lambda = \pm i$, i.e. the fixed point is marginal.
- 6. The fixed point is marginal so we cannot conclude anything about stability from the linearized eigenvalues.
- 7. $\dot{V} = x\dot{x} + ay\dot{y} = xy + ay(-x \epsilon y^3(1+x^2))$
- 8. $\dot{V} = -\epsilon y^4 (1+x^2) < 0$ for a=1. From Lyapunov theorem we can conclude (0,0) is stable.
- 9. $\ddot{x} + x + \epsilon \dot{x}^3 (1 + x^2) = 0$ $x = r(T)cos\theta$, $\dot{x} = -r(T)sin\theta$ $h(x, \dot{x}) = -r^3 sin^3 \theta (1 + r^2 cos^2 \theta)$ $r'(T) = \langle h(x, \dot{x})sin\theta \rangle > = -r^3 \langle sin^4 \theta \rangle - r^5 \langle sin^4 \theta cos^2 \theta \rangle = -\frac{3}{8}r^3 - \frac{1}{16}r^5$.
- 10. As $r'(T) < 0 \implies r(T) \to 0$ as $T \to \infty$. The fixed point (0,0) is stable as we found already.

III.

- 11. $x_n^* = f(x_n^*) \quad \Rightarrow \quad x_n^* = 0, \pm \sqrt{1 \frac{1}{r}}.$
- 12. $f'(0) = r \implies$ stable for $r \in [-1, 1]$ otherwise unstable..
- 13. $f'(\pm \sqrt{1-\frac{1}{r}}) = -2r+3 \implies \text{unstable for } r < 0 \text{ and for } r > 2.$ Stable for 1 < r < 2. The fixed point do not exist for $r \in]0,1[$
- 14. The fixed points diverges to $\pm \infty$ as $r \to 0^-$.
- 15. f'(0) = -1 at $r_1 = -1$, f'(0) = 1 at $r_2 = 1$ $f'(\pm \sqrt{1 \frac{1}{r}}) = -1$ at $r_3 = 2$
- 16. As the derivatives are -1, period doubling bifurcations take place at r_1 and r_3 .
- 17. Fixed point $x_n^* = 0$ (stable) undergo a period-doubling at $r_1 = -1$, while it itself becomes unstable. Fixed point $x_n^* = 0$ goes from stable to unstable at $r_2 = 1$ where the two non-trivial fixed point are generated as stable fixed points. Both of these undergo a period doubling at $r_3 = 2$ while they both become unstable.