Exam for Dynamical Systems and Chaos, 6 April 2011. Duration: 3 hours. Books, notes and computers are allowed. Exam consists of 3 exercises.

Answers can be written in Danish and English. Pencil is allowed Results and solutions are posted on the home page.

I.

For the differential equation

$$\dot{x} = f(x) = r + x - \frac{1}{2}\ln(1+2x)$$
 (1)

- 1. $f'(x) = 1 \frac{1}{1+2x} = 0 \Rightarrow \tilde{x} = 0$ for all values of r
- 2. $f(\tilde{x}) = 0$ when $r_c = 0$
- 3. $ln(1+y) \simeq y \frac{1}{2}y^2$ so $ln(1+2x) \simeq 2x 2x^2$. Inserted gives $r + x x + x^2 = 0 \Rightarrow x^* = \pm \sqrt{-r}$
- 4. Saddle node. Out of the blue.
- 5. $f'(+\sqrt{-r}) = 1 \frac{1}{1+\sqrt{-r}} > 0$: unstable $f'(-\sqrt{-r}) = 1 \frac{1}{1\sqrt{-r}} < 0$: stable
- 6. Bifurcation occurs at $r_c = 0$ and fixed point appear for r < 0. The upper branch $(x^* = +\sqrt{-r})$ dashed, linear in -r as $r \to -\infty$; the lower branch $(x^* = -\sqrt{-r})$: full line, $x^* \to -\frac{1}{2}$ for $r \to -\infty$.

II.

$$\ddot{x} + x + \epsilon h(x, \dot{x}) = 0$$
, $a > 0$ $h(x, \dot{x}) = (x^2 \dot{x}^2 - ax^2) \dot{x}$

- 7. $x_0 = r(T)cos(\theta), \dot{x}_0 = -r(T)sin(\theta).$
 - Using averaging theory: $r'(T) = f(r) = ar^3 < cos^2(\theta)sin^2(\theta) > -r^5 < cos^2(\theta)sin^4(\theta) > -\frac{1}{8}ar^3 \frac{1}{16}r^5$
- 8. $r'(T) = f(r) = \frac{1}{8}ar^3 \frac{1}{16}r^5 = 0 \Rightarrow r^* = \sqrt{2a} \text{ or } r^* = 0.$
- 9. $f'(r^*) = \frac{3}{8}ar^{*2} \frac{5}{16}r^{*4} = \frac{3}{4}a^2 \frac{5}{4}a^2 = -\frac{1}{2}a^2 < 0$. Stable for all a.

III.

- 10. $x_n^* = 0, \frac{5}{7}$. All derivatives are $\pm \frac{5}{2}$ so they are all unstable.
- 11. All derivatives are $\pm \frac{5}{2}$ so Lyapunov exponent is $\ln \frac{5}{2}$.
- 12. All $x_0 \in]\frac{2}{5}; \frac{3}{5}[$ becomes > 1 after one iteration.
- 13. $x_0 = \frac{4}{25}$ hits $x_1 = \frac{2}{5}$ after one iteration and $x_0 = \frac{6}{25}$ hits $x_1 = \frac{3}{5}$ after one iteration so all $x_0 \in]\frac{4}{25}; \frac{6}{25}[$ becomes > 1 after two iterations.
 - $x_0 = \frac{21}{25}$ hits $x_1 = \frac{2}{5}$ after one iteration and $x_0 = \frac{19}{25}$ hits $x_1 = \frac{3}{5}$ after one iteration so all $x_0 \in]\frac{19}{25}; \frac{21}{25}[$ becomes > 1 after two iterations.
- 14. $D = \ln(2)/\ln(5/2) \sim 0.76$