Exam for Dynamical Systems and Chaos, 11 April 2012.

Duration: 4 hours. Books, notes and computers are allowed.

Exam consists of 3 exercises. The questions are equally weighted.

Answers can be written in Danish and English. Pencil is allowed

Results and solutions are posted on the home page.

T

Consider the differential equation

$$\dot{x} = -x^2 + x(1-r) + r \quad , \quad r > 0 \tag{1}$$

- 1. Find the fixed points of (1) and their stability.
- 2. Determine the potential function V(x,r) and plot it for r=2.
- 3. Find the maximal positive velocity as a function of r.

II.

Consider the system of differential equations

$$\dot{x} = -x^3 + y
\dot{y} = -ax - by$$
(2)

- 4. Show that (0,0) is a fixed point. Find the Jacobian and calculate the eigenvalues of the fixed point (0,0) as a function of a, b.
- 5. Show that the fixed point (0,0) is linearly stable for all values a > 0, b > 0.
- 6. For b > 0, use the Lyapunov function $V(x,y) = x^2 + y^2$ to find at least one value of the parameter a where the fixed point (0,0) is globally stable.
- 7. Now set a=1. Argue that a Hopf bifurcation takes place for b=0 (hint: you may use the τ, Δ classification scheme). Is the bifurcation super- or sub-critical?
- 8. Now set b = 1. When a < 0 there exist two fixed points different from (0,0). Find these fixed points.
- 9. Insert these fixed points into the Jacobian and find the trace and the determinant. What kind of bifurcation takes place at a = 0?

III.

Consider the two-dimensional map

$$x_{n+1} = x_n^2 - y_n^2 + c$$
 , $y_{n+1} = 2x_n y_n$ (3)

- 10. First consider the case $y_n = 0$ where (3) reduce to the 1d map $x_{n+1} = x_n^2 + c$. Find the fixed points x^* .
- 11. Determine the stability of the fixed points in the interval of c for which they exist.
- 12. What happens to the fixed point $x^* < \frac{1}{2}$ for $c = -\frac{3}{4}$.
- 13. Now consider the full two-dimensional system (3). Find the fixed points (x_n^*, y_n^*) for which y_n is non-zero.
- 14. For which interval in c do these fixed point exist?
- 15. Determine the Jacobian matrix and find the eigenvalues of the fixed points found in question 13.
- 16. Show that the map (3) can be written as $z_{n+1} = z_n^2 + c$ in the complex variable $z_n = x_n + iy_n$.