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9 Lorenz Equations

9.1 A Chaotic Waterwheel

9.1.4

(a) Ṗ = 0 gives ED = P and Ḋ = 0 gives D = λ+ 1− λEP . Therefore

P =
(λ+ 1)E

λE2 + 1

and

Ė = κ

(
(λ+ 1)E

λE2 + 1
− E

)
Denote the terms on the right hand side as f(E), and

f ′(E) = κ

[
(λ+ 1)(1− λE2)

(λE2 + 1)2
− 1

]
• If λ < 0, there are 3 fix points E∗

1 = 0, E∗
2 = 1 and E∗

3 = −1. The derivate at E∗
1 = 0 is

f ′(E∗
1 ) = λκ < 0, so it is stable.

• If λ = 0, there are infinite fix points. The derivative at E∗ = 0 is f ′(E∗) = 0, showing that
λ = 0 is the bifurcation point.

• If λ > 0, there are 3 fix points E∗
1 = 0, E∗

2 = 1 and E∗
3 = −1. The derivate at E∗

1 = 0 is
f ′(E∗

1 ) = λκ > 0, so it is unstable.

Therefore, it is a degenerate pitchfork bifurcation.
(b) By comparing the equation of ˙̃x and Ė, we have t̃ = κt/σ, x̃ = αE and ỹ = αP where α

needs to be determined. For verification of such transformation, we have

dx̃

dt̃
=

αdE

κ/σdt
=

ασ

κ

dE

dt
= ασ(P − E) = σ(ỹ − x̃)

Then we compute dỹ/dt̃ with Ṗ to obtain the transformation of γ1 and D.

dỹ

dt̃
=

ασdP

κdt
=

ασ

κ
γ1(ED − P ) =

σ

κ
γ1(x̃D − ỹ) = x̃(r − z̃)− ỹ
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Therefore γ1 = κ/σ and D = r − z̃.
Finally compute dz̃/dt̃ with Ė to determine the transformation of the remaining variables.

dz̃

dt̃
= − dD

κ/σdt
= −σ

κ

dD

dt
= −σγ2

κ
(λ+1−D−λEP ) = −σγ2

κ
(λ+1−r)−σγ2

κ
z̃+

σγ2
κ

α2λx̃ỹ = x̃ỹ−bz̃

Therefore λ = r − 1, γ2 = bκ/σ with a special relationship α = [b(r − 1)]−1/2.

9.2 Simple Properties of the Lorenz Equations

9.2.1

(a) The two fix points are (x∗, y∗, z∗) = (±
√
b(r − 1),±

√
b(r − 1), r−1), if r > 1, and the Jacobian

is

J|(x∗,y∗,z∗) =

 −σ σ 0
r − z −1 −x
y x −b

∣∣∣∣∣∣
(x∗,y∗,z∗)

=

 −σ σ 0

1 −1 ∓
√

b(r − 1)

±
√
b(r − 1) ±

√
b(r − 1) −b


The characteristic polynomial is

P (λ) = |λI− J| =det

 λ+ σ −σ 0

−1 λ+ 1 ±
√

b(r − 1)

∓
√
b(r − 1) ∓

√
b(r − 1) λ+ b


=(λ+ σ)(λ+ 1)(λ+ b) + σb(r − 1)− σ(λ+ b) + (λ+ σ)b(r − 1)

=λ3 + (σ + b+ 1)λ2 + b(σ + r)λ+ 2σb(r − 1) = 0

(b) Denote the solutions of P (λ) = 0 as λ1,2,3 and we have

λ1 + λ2 + λ3 = −(σ + b+ 1), λ1λ2 + λ1λ3 + λ2λ3 = b(σ + r), λ1λ2λ3 = −2σb(r − 1)

Assume λ1 = ωi and λ2 = −ωi where ω ∈ R, and the first equation gives λ3 = −(σ + b + 1) and
the second equation gives ω =

√
b(σ + r). Solving the third equation gives that

−(σ + b+ 1)b(σ + r) = −2σb(r − 1) → r =
(σ + b+ 1)bσ + 2σb

2σb− (σ + b+ 1)b
= σ

σ + b+ 3

σ − b− 1

Since rH > 0 and σ, b > 0, we should have σ > b+ 1.
(c) λ3 = −(σ + b+ 1).

9.2.6

(a) The divergence of the vector field is

∇ · f⃗ =
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

=− v − v + 0 = −2v
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Therefore the volume V follows the relationship that V̇ = −2vV and V = V (0)e−2vt. V is decreas-
ing, so the system is dissipative.

(b) Note that x∗ = ±k and y∗ = ±k−1, obviously x∗y∗ = (±k)(±k−1) = 1 and ż = 0 is satisfied.
Since z = vk2, we have zy − vx = (vk2)(±k−1) − v(±k) = (±vk) − (±vk) = 0 and ẋ = 0 is

satisfied.
Finally by setting ẏ = 0, we have

vy = (z−a)x → ±vk−1 = ±(vk2−a)k → vk−1 = (vk2−a)k → vk−2 = vk2−a → v(k2−k−2) = a

(c) Without loss of generality, the Jacobian at the fix point (k, k−1, vk2) is

J|(k,k−1,vk2) =

 −v z y
z − a −v x
−y −x 0

∣∣∣∣∣∣
(k,k−1,vk2)

=

 −v vk2 k−1

vk2 − a −v k
−k−1 −k 0


so the eigenvalues of the Jacobian follows

0 = det(J|(k,k−1,vk2) − λI) = det

 −v − λ vk2 k−1

vk2 − a −v − λ k
−k−1 −k −λ


and we have

λ3 + 2vλ2 + (k2 + k−2)λ+ 2v(k2 + k−2) = 0

Since v, k2 > 0, we have

λ1 + λ2 + λ3 = −2v < 0;λ1λ2 + λ2λ3 + λ3λ1 = k2 + k−2 > 0 and λ1λ2λ3 = −2v(k2 + k−2) < 0

The third relation only yields two possible cases: (1) λ1 < 0, λ2,3 > 0 and (2) λ1,2,3 < 0. However,
for case (1), we have

λ1λ2 + λ2λ3 + λ3λ1 = λ1(λ2 + λ3) + λ2λ3 < −(λ2 + λ3)
2 + λ2λ3 = −λ2

2 − λ2λ3 − λ2
3 < 0

contradicting to the second relation. Therefore, all three eigenvalues are negative and the fix point
is stable.

9.4 Lorenz Map

9.4.2

(a) f(x) likes a tent.
(b)

• If 0 ≤ x∗ ≤ 1/2, solving f(x∗) = x∗ gives x∗ = 0. It is unstable since f ′(x∗) = 2 > 1.

• If 1/2 < x∗ ≤ 1, solving f(x∗) = x∗ gives x∗ = 2/3. It is unstable since f ′(x∗) = −2 < −1.

(c)

• If 0 ≤ x∗ ≤ 1/2 and 0 ≤ f(x∗) ≤ 1/2, f(f(x∗)) = f(2x∗) = 4x∗ = x∗. So x∗ = 0 and it is not
a period-2 orbit.
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• If 0 ≤ x∗ ≤ 1/2 and 1/2 < f(x∗) ≤ 1 (and same for 1/2 < x∗ ≤ 1 and 0 ≤ f(x∗) ≤ 1/2),
f(f(x∗)) = f(2x∗) = 2− 4x∗ = x∗. So x∗ = 2/5, f(x∗) = 4/5 and it is unstable.

• If 1/2 < x∗ ≤ 1 and 1/2 < f(x∗) ≤ 1, f(f(x∗)) = f(2 − 2x∗) = 4x∗ − 2 = x∗. So x∗ = 2/3
and it is not a period-2 orbit.

(d) Period-3. For simplicity, here describe the relationship between x∗, f(x∗), f(f(x∗)) and 1/2,
respectively.

• <,<,<: f(f(f(x∗))) = f(f(2x∗)) = f(4x∗) = 8x∗ = x∗. So x∗ = 0 and it is not a period-3
orbit.

• <,<,> (same for <,>,< and >,<,<): f(f(f(x∗))) = f(4x∗) = 2 − 8x∗ = x∗. So x∗ =
2/9, f(x∗) = 4/9, f(f(x∗)) = 8/9. It is unstable.

• <,>,> (same for >,<,> and >,>,<): f(f(f(x∗))) = f(f(2x∗)) = f(2−4x∗) = 8x∗−2 = x∗.
So x∗ = 2/7, f(x∗) = 4/7, f(f(x∗)) = 6/7 and it is unstable.

• >,>,>: f(f(f(x∗))) = f(f(2 − 2x∗)) = f(4x∗ − 2) = 6 − 8x∗ = x∗. So x∗ = 2/3 and it is
not a period-3 orbit.

Period-4.

• <,<,<,<: f(f(f(f(x∗)))) = 16x∗ = x∗, so x∗ = 0 and it is not a period-4 orbit.

• <,<,<,> (and 3 others): f(f(f(f(x∗)))) = f(8x∗) = 2− 16x∗ = x∗. So x∗ = 2/17, f(x∗) =
4/17, f(f(x∗)) = 8/17, f(f(f(x∗))) = 16/17. It is unstable.

• <,<,>,> (and 3 others): f(f(f(f(x∗)))) = f(f(4x∗)) = f(2 − 8x∗) = 16x∗ − 2 = x∗. So
x∗ = 2/15, f(x∗) = 4/15, f(f(x∗)) = 8/15, f(f(f(x∗))) = 14/15. It is unstable.

• <,>,<,> (and 1 other): f(f(f(f(x∗)))) = f(f(2 − 4x∗)) = 16x∗ − 6 = x∗. So x∗ =
2/5, f(x∗) = 4/5 and it is not a period-4 orbit.

• <,>,>,> (and 3 others): f(f(f(f(x∗)))) = f(f(f(2x∗))) = f(f(2 − 4x∗)) = f(8x∗ − 2) =
6 − 16x∗ = x∗. So x∗ = 6/17, f(x∗) = 12/17, f(f(x∗)) = 10/17, f(f(f(x∗))) = 14/17. It is
unstable.

• >,>,>,>: f(f(f(f(x∗)))) = f(f(f(2−2x∗))) = f(f(4x∗−2)) = f(6−8x∗) = 16x∗−10 = x∗.
So x∗ = 2/3 and it is not a period-4 orbit.
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