Dynamical Systems and Chaos 2015 Spring

Homework Solutions, Session 09

March 4, 2015

8 Bifurcations Revisited

8.2 Hopf Bifurcations

8.2.1

Rewrite the 2nd order ODE as

$$\dot{x} = y, \dot{y} = -\mu(x^2 - 1)y - x + a$$

and the fix point is (a,0). Linearize the system around the fix point and the Jacobian is

$$\mathbf{J}|_{(a,0)} = \begin{bmatrix} 0 & 1 \\ -2\mu xy - 1 & -\mu(x^2 - 1) \end{bmatrix} \Big|_{(a,0)} = \begin{bmatrix} 0 & 1 \\ -1 & -\mu(a^2 - 1) \end{bmatrix}$$

and the eigenvalues are

$$\lambda_{1,2} = \frac{-\mu(a^2 - 1) \pm \sqrt{\mu^2(a^2 - 1)^2 - 4}}{2}$$

Hopf bifurcation requires that $-\mu(a^2-1)=0$ and $\mu^2(a^2-1)^2-4<0$, and the solution is $a=\pm 1$ or $\mu=0$. However, with $\mu=0$, the system is a linear one and we have a linear center. Therefore the solution is $a=\pm 1$.

8.2.9

(a) The nullclines are

$$\dot{x} = 0 \to x = 0 \text{ or } y = (b - x)(1 + x)$$

 $\dot{y} = 0 \to y = 0 \text{ or } y = \frac{x}{a(1 + x)}$

(b) The intersections between the nullclines are

- Between x = 0 and y = 0, (0, 0)
- Between x = 0 and y = x/a(1+x), (0,0)
- Between y = (b x)(1 + x) and y = 0, (b, 0)

• Between y = (b-x)(1+x) and y = x/a(1+x), solving the equation yields the following cubic polynomial

$$x^{3} + (2-b)x^{2} + (1+a-2b)x - b = 0$$

Clearly, the 3 solutions $(x_{1,2,3})$ satisfy that $x_1x_2x_3 = b > 0$. Therefore, at least one of them is positive, indicating that at least one positive fix point $(x^*, y^*) \in \mathbb{R}^2_{>0}$ exists.

(c) The Jacobian at the fix point is

$$\mathbf{J}|_{(x^*,y^*)} = \begin{bmatrix} b - 2x^* - \frac{y^*}{(x^*+1)^2} & -\frac{x^*}{1+x^*} \\ \frac{y}{(x^*+1)^2} & \frac{x^*}{1+x^*} - 2ay^* \end{bmatrix} = \begin{bmatrix} \frac{b-x^*}{x^*+1}x^* - x^* & -\frac{x^*}{1+x^*} \\ \frac{b-x^*}{x^*+1} & -\frac{x^*}{1+x^*} \end{bmatrix}$$

The Hopf bifurcation requires that the trace to be 0 and the determinant to be positive. The trace is

$$\operatorname{tr} \mathbf{J}|_{(x^*,y^*)} = \frac{b - x^*}{x^* + 1} x^* - x^* - \frac{x^*}{1 + x^*} = \frac{x^*}{1 + x^*} (b - 2x^* - 2)$$

 $\operatorname{tr} \mathbf{J}|_{(x^*,y^*)} = 0$ yields $x^* = (b-2)/2$. The determinant is

$$\det \mathbf{J}|_{(x^*,y^*),x^*=(b-2)/2} = -\left(\frac{b-x^*}{x^*+1}x^*-x^*\right)\frac{x^*}{1+x^*} + \frac{b-x^*}{x^*+1}\frac{x^*}{1+x^*} = \frac{2x^*}{1+x^*} > 0$$

Therefore, there exists a Hopf bifurcation at the fix point. We then need to derive a_c as follow

$$a_c = \frac{x^*}{(b-x^*)(1+x^*)^2} = \frac{(b-2)/2}{[(b+2)/2](b/2)^2} = \frac{4(b-2)}{(b+2)b^2}$$

(d)

Figure 1: 8.2.9. a = 1/120, b = 4

Figure 2: 8.2.9. a = 1/12, b = 4

Figure 3: 8.2.9. a = 1, b = 4

8.3 Oscillating Chemical Reactions

8.3.1

(a) The fix point is (1, b/a), and the Jacobian is

$$\mathbf{J}|_{(1,b/a)} = \begin{bmatrix} -b - 1 - 2axy & ax^2 \\ b - 2axy & -ax^2 \end{bmatrix} \Big|_{(1,b/a)} = \begin{bmatrix} b - a & a \\ -b & -a \end{bmatrix}$$

and the eigenvalues are

$$\lambda_{1,2} = \frac{-(a+1-b) \pm \sqrt{(a+1-b)^2 - 4a}}{2}$$

- If a + 1 b > 0, or b < a + 1, the fix point is stable;
- If b > a + 1, the fix point is unstable;

- If
$$(a + 1 - b)^2 - 4a > 0$$
, it is a saddle;

- If $(a+1-b)^2-4a<0$, it is an unstable spiral
- If b = a + 1, the fix point is a center.
- (c) Denote $b_c = a + 1$. If $b > b_c$, the fix point is unstable spiral. Together with the fact that there is a trapping region, there must exist a closed orbits, i.e. limit cycle.
 - (d) $b > b_c$.

Figure 4: 8.2.9. a = 1, b = 1

Figure 5: 8.2.9. a = 1, b = 2

Figure 6: 8.2.9. a = 1, b = 3

(e) The frequency is

$$\omega = \left. \frac{\sqrt{-(a+1-b)^2 + 4a}}{2} \right|_{b \approx b_c} = \sqrt{a}$$

Therefore the period is $T = 2\pi/\omega = 2\pi/\sqrt{a}$.

8.7 Poincare Maps

8.7.1

$$\int_{r_0}^{r_1} \frac{\mathrm{d}r}{r(1-r^2)} = \int_{r_0}^{r_1} \left(\frac{1}{r} - \frac{1}{2}\frac{1}{r-1} - \frac{1}{2}\frac{1}{r+1}\right) \mathrm{d}r$$

$$= \int_{r_0}^{r_1} \mathrm{d}\ln\frac{|r|}{\sqrt{|r^2-1|}}$$

$$= \ln\frac{|r_1|}{\sqrt{|r_1^2-1|}} - \ln\frac{|r_0|}{\sqrt{|r_0^2-1|}}$$

Since $0 < r_0, r_1 < 1$, we have

$$\int_{r_0}^{r_1} \frac{\mathrm{d}r}{r(1-r^2)} = \ln \frac{r_1}{\sqrt{1-r_1^2}} - \ln \frac{r_0}{\sqrt{1-r_0^2}} = \ln \frac{r_1}{r_0} \frac{\sqrt{1-r_0^2}}{\sqrt{1-r_1^2}}$$

Therefore

$$\int_{r_0}^{r_1} \frac{\mathrm{d}r}{r(1-r^2)} = 2\pi \to \frac{r_1^2}{1-r_1^2} = \mathrm{e}^{4\pi} \frac{r_0^2}{1-r_0^2} \to r_1^2 = \frac{\mathrm{e}^{4\pi} r_0^2/(1-r_0^2)}{1+\mathrm{e}^{4\pi} r_0^2/(1-r_0^2)} \to r_1 = \frac{1}{\sqrt{1+\mathrm{e}^{-4\pi}(r_0^{-2}-1)}}$$

It can be shown that when $r_0, r_1 > 1$, the expression for P(r) is identical.

The derivative of P(r) is

$$P'(r) = \frac{e^{-4\pi}/r^3}{(1 + e^{-4\pi}(r^{-2} - 1))^{3/2}}$$

and

$$P'(r^*) = \frac{e^{-4\pi}/r^{*3}}{(1 + e^{-4\pi}(r^{*-2} - 1))^{3/2}} = e^{-4\pi}$$