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7 Limit Cycles

7.3 Poincare-Bendixson Theorem
7.3.4

(c) Consider another two ellipses with different sizes. The first one is 422 + y? = 4 and the second
one is 422 + y? = 1/4. The area between the two ellipses is the region R we want to study. The
objective is to show that R is a trapping region.

Firstly consider 422 + y? = 4 (the outer ellipse). Denote x = 7 cosf and y = 2rsin . Changing
to polar coordinate gives

42 4 9? = 4r? = Sxd + 2y = 8ri — 8r2(1 — 4r?) = 8rF — =1 — 413

A point on the ellipse satisfies that r* = 1. The derivative is f'(r*) = 1 — 12r%|,. = —11 < 0.
Therefore, the points on the outer ellipse are attracted inside.
Then consider 422 + y?> = 1/4 (the inner ellipse). Use the same technique and denote = =
rcosf/4 and y = rsin /2. Changing to polar coordinate gives
1 1
A2 22,2 L p g 2g3
Tz +y 4T r=r 47"
The derivative at r* = 1 is 1/4, so all the points at the inner ellipse is repelled. Therefore, R is a
trapping region and there exists a closed orbit inside R.
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Figure 1: 7.3.4

7.6 Weakly Nonlinear Oscillators
7.6.5
Given zg = r(T) cos(T + ¢(T)), we have

h (330, %) = h(r(T) cos(T + ¢(T)), —r(T) sin(r + &(T))) = 7(T)? cos(1 + ¢(T)) Sin2<7' +¢(T))

Therefore, the average equation for r(T) is

dr(T)
dr

1 [ 3
= (hsin(t + ¢(T))) = T‘(T)32— / cos 0 sin® 0df = T(Z) sin? 42" = 0
™ Jo

and the equation for ¢(T) is

7"(T)%(TT) = (hcos(t + ¢(T))) = T(T)gi /0 o 0 sin? 6 — r(ig)?’ R dﬁg) _ r(’é‘)2

Therefore, r(T) = 79 and ¢(T) = r3T/8, where 9 > 0 is a constant. The amplitude can be any
positive real number and the frequency is w = 1+ €¢/(T) + O(e?) = 1 + er3 /8 + O(€?).
Especially, when 2(0) = a and #(0) = 0, we have
ir 2T
ro COS <T+T0—) =171y = a,—rp sin (T—&—TO—) =0

8 8 7=0,T=0

7=0,T=0



Therefore, the solution is

st = acos (1)) + 009

Similar to 7.6.5, the expression of h is

7.6.9

h (mo, %ﬂ)) = h(rcosf, —rsinf) = —r°sin® O cos? § + r*sin® 0
T

The equation for r is

o 3

= (hsinf) = —r®(sin? 6 cos? ) + 73 (sin* §) = T + g

and the equation for d) is
ré = (hcosf) = —r°(sin®  cos® 0) + 3 (sin® O cos ) = 0

Therefore, by obtaining the solution of 7+ = 0, we have the amplitude is » = v/6. The frequency is
w =1+ O(€?) since ¢(T) = 0.
The solution of x is then
x(t,€) = V6 cost + Ole)

8 Bifurcations Revisited

8.1 Saddle-Node, Transcritical and Pitchfork Bifurcations
8.1.6

The fix points are
=1+ \/1—py" " =2+2/1—p
Clearly, the critical point is u. = 1. When p > u, there is no fix point; when p < ., there

are two fix points; when p = ., there are two identical fix points. Therefore, it is a saddle-node
bifurcation.
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Figure 2: 8.1.6. u=3/4
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Figure 3: 8.1.6. p=1
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Figure 4: 8.1.6. p=5/4



