Dynamical Systems and Chaos 2015 Spring

 ${\bf Homework\ Solutions,\ Session\ 07}$

February 23, 2015

6 Phase Plane

6.8 Index Theory

6.8.2

The fix point is (0,0) and I=0 since the velocity arrow always points to +x direction.

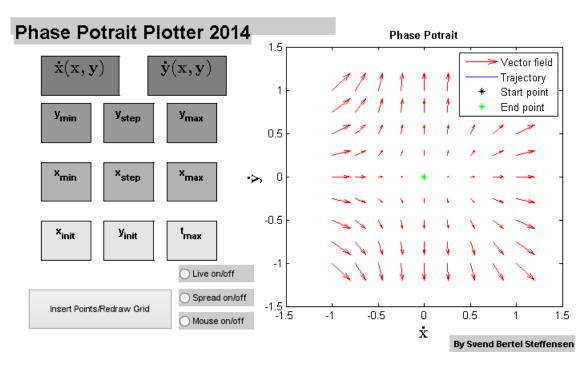


Figure 1: 6.8.2

6.8.4

The fix point is (0,0) and I=-1 since a negative x results in a negative velocity in y.

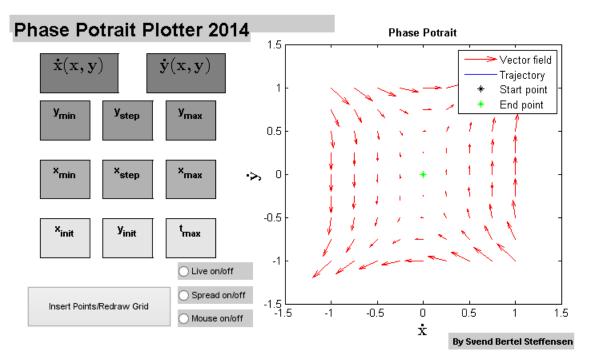


Figure 2: 6.8.4

7 Limit Cycles

7.2 Ruling Out Closed Orbits

7.2.6

(a) First integrate f gives

$$V(x,y) = -\int f(x,y)dx = -\int (y^2 + y\cos x)dx = -xy^2 - y\sin x + h(y)$$

where h is only a function of y. Then solving $g(x,y) = -\partial V(x,y)/\partial y$ gives

$$-\frac{\partial V(x,y)}{\partial y} = \frac{\partial (xy^2 + y\sin x - h(y))}{\partial y} = 2xy + \sin x - h'(y)$$

Therefore, h'(y) = 0 and h(y) = C where C is a constant. The potential is then

$$V(x,y) = -xy^2 - y\sin x + C$$

(b) Integrate f gives

$$V(x,y) = -\int f(x,y)dx = -\int (3x^2 - 1 - e^{2y})dx = -x^3 + x + xe^{2y} + h(y)$$

Then we have

$$-\frac{\partial V(x,y)}{\partial y} = \frac{\partial (x^3 - x - xe^{2y} - h(y))}{\partial y} = -2xe^{2y} - h'(y)$$

Therefore h'(y) = 0, h(y) = C and

$$V(x,y) = -x^3 + x + xe^{2y} + C$$

7.2.10

The only real fix point is $(x^*, y^*) = (0, 0)$. For the Lyapunov function V, we should have

$$V(x^*, y^*) = 0, V(x, y) = ax^2 + by^2 > 0 \forall x \neq x^*, y \neq y^*$$

This gives that a, b > 0. Then the derivative of V is

$$\dot{V} = 2ax\dot{x} + 2by\dot{y} = 2axy - 2bxy - 2ax^4 - 2by^4$$

Obviously $\dot{V}(x^*, y^*) = 0$. A necessary condition for $\dot{V}(x, y) < 0, \forall x \neq x^*, y \neq y^*$ is a = b. Therefore, by choosing values of a and b such that a = b > 0, $V = ax^2 + by^2$ is a valid Lyapunov function, and there is no closed orbit around the origin.

7.3 Poincare-Bendixson Theorem

7.3.4

(a) The Jacobian is

$$\mathbf{J}|_{(0,0)} = \begin{bmatrix} 1 - 12x^2 - y^2 - \frac{1}{2}y & -2xy - \frac{1}{2} - \frac{1}{2}x \\ -8xy + 2 + 4x & 1 - 4x^2 - 3y^2 \end{bmatrix}|_{(0,0)} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 2 & 1 \end{bmatrix}$$

and the eigenvalues are $\lambda_{1,2} = 1 \pm i$. This indicates that it is a unstable spiral. (b) Note that V = 0 gives $4x^2 + y^2 = 1$. For all other (x, y), it can be shown that V(x, y) > 0. The derivative of V is

$$\dot{V} = 2(1 - 4x^2 - y^2)(-8x\dot{x} - 2y\dot{y}) = -4(1 - 4x^2 - y^2)^2(4x^2 + y^2)$$

Clearly, for (x, y) on the ellipse, $\dot{V} = 0$. For (x, y) = (0, 0), $\dot{V} = 0$ but this point is unstable. For all other (x,y), V < 0. Therefore, V is a Lyapunov-like function and the all the trajectories converge to the ellipse.

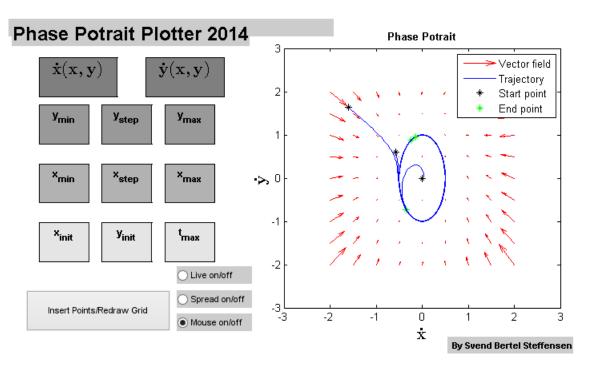


Figure 3: 7.3.4