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Homework Solutions, Session 06

February 23, 2015

6 Phase Plane

6.3 Fixed Points and Linearization
6.3.10

(a) Linearizing the equation around the origin and the Jacobian is

3| _|ly = _ 0 0
(0,0) S N P 0 -1

The eigenvalues are A; 2 = 0,—1 and the fact that A\; = 0 indicates that it is a non-isolated
fixed point.

(b) Solving # = 0,9 = 0 only yields one solution. So the origin is an isolated fix point.

(c) It’s a saddle node. The origin is stable along vy and unstable along vy.

(d)
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Figure 1: 6.3.10

6.5 Conservative Systems
6.5.1

Rewrite the system as

t=yy=a—z

(a) The equilibrium points are (—1,0), (0,0) and (1, 0).
e For (0,0), the Jacobian is

3| _[ 0 1] _{0 1]
0,0) = 2 =
CO= 822 =1 0 ||, [ -1 0

and the eigenvalues are A\; o = %i. So it is a center.

0 1
J(+1,0) = [ 9 0 ]

The eigenvalues are A\; o = +4/2, so it is saddle node.

e For (+1,0), the Jacobian is

(b) The kinetic energy is #2/2. The potential is



where Cy is a constant. Therefore, the conservation law is

1 1 1
E:§i2+§x2—1$4+00

(c)
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Figure 2: 6.5.1

6.5.11
The fix points are (0,0),(1,0) and (—1,0).

e For (+1,0), the Jacobian is

3 B 0 1 o 1
EFL0) = | 1322 —b @i L2 b

and the eigenvalues are A\ o = (—b =+ /b2 — 8)/2. It is a stable spiral.

e For (0,0), the Jacobian is
0 1
J|(0,O) = |: 1 —b :|

The eigenvalues are A1 2 = (—b=£ V4 + b2)/2. It is a saddle node.
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Figure 3: 6.5.11

6.5.13

(a) First we need to show that it is a conservative system. The kinetic energy is #2/2 and the
potential is

1 1
V(z) = /(m +ex®)de = C + 5332 + Zem4

So the energy is

1 1 1
E=§$2+§$2+16$4+C

Especially,
E:j:jt+xj:+ex33b:3b(:i+x+ex3) =0

So the system is conservative.

We then need to show that x = 0 is the minimum of the total energy E. Note that when
e > 0, we have E > C since the square of a real number is non-negative. At the origin, we have
x=0,2 =0 and E(0) = C. Therefore, it is a minimum of E, so the origin is a nonlinear center.

(b) When e < 0, for the trajectories closed to the origin, we have z2 > x*. Therefore, E is
still an increasing function of z and #, so the trajectories are closed. When the trajectories are far
away, 22 > 2* no longer holds, so they may not be closed.



6.6 Reversible Systems

6.6.7

Rewrite the 2nd order ODE as
T=y,y=—wy—x

Denote the transitions as © — —&, y — 9 and t — —, and we have

i _)d:c _)—d:c 5 dz  _
AT A N T
and q 4 €
d—z——xy—xﬁ_—gt §Jgj+a~c—>d—2§:—fgj—i

Therefore, the system is reversible.
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Figure 4: 6.6.7



