# Dynamical Systems and Chaos 2015 Spring

Homework Solutions, Session 06

February 23, 2015

# 6 Phase Plane

## 6.3 Fixed Points and Linearization

## 6.3.10

(a) Linearizing the equation around the origin and the Jacobian is

$$\mathbf{J}|_{(0,0)} = \begin{bmatrix} y & x \\ 2x & -1 \end{bmatrix} \bigg|_{(0,0)} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$$

The eigenvalues are  $\lambda_{1,2}=0,-1$  and the fact that  $\lambda_1=0$  indicates that it is a non-isolated fixed point.

- (b) Solving  $\dot{x} = 0, \dot{y} = 0$  only yields one solution. So the origin is an isolated fix point.
- (c) It's a saddle node. The origin is stable along  $\mathbf{v}_2$  and unstable along  $\mathbf{v}_1$ .
- (d)



Figure 1: 6.3.10

# 6.5 Conservative Systems

#### 6.5.1

Rewrite the system as

$$\dot{x} = y, \dot{y} = x^3 - x$$

- (a) The equilibrium points are (-1,0), (0,0) and (1,0).
- For (0,0), the Jacobian is

$$\mathbf{J}|_{(0,0)} = \begin{bmatrix} 0 & 1 \\ 3x^2 - 1 & 0 \end{bmatrix}|_{(0,0)} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

and the eigenvalues are  $\lambda_{1,2}=\pm i$ . So it is a center.

• For  $(\pm 1, 0)$ , the Jacobian is

$$\mathbf{J}|_{(\pm 1,0)} = \left[ \begin{array}{cc} 0 & 1\\ 2 & 0 \end{array} \right]$$

The eigenvalues are  $\lambda_{1,2} = \pm \sqrt{2}$ , so it is saddle node.

(b) The kinetic energy is  $\dot{x}^2/2$ . The potential is

$$V = -\int (x^3 - x) dx = \frac{1}{2}x^2 - \frac{1}{4}x^4 + C_0$$

where  $C_0$  is a constant. Therefore, the conservation law is

$$E = \frac{1}{2}\dot{x}^2 + \frac{1}{2}x^2 - \frac{1}{4}x^4 + C_0$$

(c)



Figure 2: 6.5.1

#### 6.5.11

The fix points are (0,0),(1,0) and (-1,0).

• For  $(\pm 1, 0)$ , the Jacobian is

$$\mathbf{J}|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -b \end{bmatrix}|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1\\ -2 & -b \end{bmatrix}$$

and the eigenvalues are  $\lambda_{1,2}=(-b\pm\sqrt{b^2-8})/2.$  It is a stable spiral.

• For (0,0), the Jacobian is

$$\mathbf{J}|_{(0,0)} = \left[ \begin{array}{cc} 0 & 1\\ 1 & -b \end{array} \right]$$

The eigenvalues are  $\lambda_{1,2}=(-b\pm\sqrt{4+b^2})/2$ . It is a saddle node.



Figure 3: 6.5.11

#### 6.5.13

(a) First we need to show that it is a conservative system. The kinetic energy is  $\dot{x}^2/2$  and the potential is

$$V(x) = \int (x + \epsilon x^3) dx = C + \frac{1}{2}x^2 + \frac{1}{4}\epsilon x^4$$

So the energy is

$$E = \frac{1}{2}\dot{x}^2 + \frac{1}{2}x^2 + \frac{1}{4}\epsilon x^4 + C$$

Especially,

$$\dot{E} = \dot{x}\ddot{x} + x\dot{x} + \epsilon x^3\dot{x} = \dot{x}\left(\ddot{x} + x + \epsilon x^3\right) = 0$$

So the system is conservative.

We then need to show that x=0 is the minimum of the total energy E. Note that when  $\epsilon > 0$ , we have  $E \ge C$  since the square of a real number is non-negative. At the origin, we have  $x=0, \dot{x}=0$  and E(0)=C. Therefore, it is a minimum of E, so the origin is a nonlinear center.

(b) When  $\epsilon < 0$ , for the trajectories closed to the origin, we have  $x^2 \gg x^4$ . Therefore, E is still an increasing function of x and  $\dot{x}$ , so the trajectories are closed. When the trajectories are far away,  $x^2 \gg x^4$  no longer holds, so they may not be closed.

# 6.6 Reversible Systems

#### 6.6.7

Rewrite the 2nd order ODE as

$$\dot{x} = y, \dot{y} = -xy - x$$

Denote the transitions as  $x \to -\tilde{x},\, y \to \tilde{y}$  and  $t \to -\tilde{t},$  and we have

$$\dot{x} = y \to \frac{\mathrm{d}x}{\mathrm{d}t} = y \to \frac{-\mathrm{d}\tilde{x}}{-\mathrm{d}\tilde{t}} = \tilde{y} \to \frac{\mathrm{d}\tilde{x}}{\mathrm{d}\tilde{t}} = \tilde{y}$$

and

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -xy - x \to \frac{\mathrm{d}\tilde{y}}{-\mathrm{d}\tilde{t}} = \tilde{x}\tilde{y} + \tilde{x} \to \frac{\mathrm{d}\tilde{y}}{\mathrm{d}\tilde{t}} = -\tilde{x}\tilde{y} - \tilde{x}$$

Therefore, the system is reversible.



Figure 4: 6.6.7