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6 Phase Plane

6.1 Phase Protraits

6.1.2

Fix points: (−1, 0), (0, 0) and (1, 0). All of the 3 points are stable along y axis, but only (−1, 0)
and (1, 0) are stable along x axis. Therefore, (−1, 0) and (1, 0) are stable and (0, 0) is saddle.

Figure 1: 6.1.2. Note that initial points (0,±1) show wrong results, due to numerical issues.

1



6.1.5

The fix point is (0, 0) and (1, 1). First linearize the system around the fix point (0, 0) and the
Jacobian is

J|(x,y)=(0,0) =

[
2− 2x− y −x

1 −1

]∣∣∣∣
(x,y)=(0,0)

=

[
2 0
1 −1

]
The eigenvalues of the Jacobian are λ1 = 2 and λ2 = −1 and the corresponding eigenvector is
v1 = [1, 1/3]′ and v2 = [0, 1]′. Therefore it is unstable along the direction of v1 and is stable along
the direction of v2. The fix point is a saddle node.

We then linearize the system around (1, 1) and the Jacobian is

J|(x,y)=(1,1) =

[
2− 2x− y −x

1 −1

]∣∣∣∣
(x,y)=(1,1)

=

[
−1 −1
1 −1

]
and the eigenvalues are λ1 = −1 + i and λ2 = −1− i. Since ℜλ1,2 < 0 and ℑλ1,2 ̸= 0, it is a stable
spiral.

Figure 2: 6.1.5. Note that initial points (0,±1) show wrong results, due to numerical issues.

6.3 Fixed Points and Linearization

6.3.1

The fix points are (2, 2) and (−2,−2).
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• For (2, 2), the Jacobian is

J|(2,2) =
[

1 −1
2x 0

]∣∣∣∣
(2,2)

=

[
1 −1
4 0

]
The eigenvalues are λ1 = (1+

√
15i)/2, λ2 = (1−

√
15i)/2 and the corresponding eigenvectors

are v1 = [1, (1−
√
15i)/2]′, v2 = [1, (1 +

√
15i)/2]′. The fix point is unstable spiral.

• For (−2,−2), the Jacobian is

J|(−2,−2) =

[
1 −1
−4 0

]
The eigenvalues are λ1 = (1 +

√
17)/2, λ2 = (1 −

√
17/2 and the corresponding eigenvectors

are v1 = [1, (1 −
√
17)/2]′, v1 = [1, (1 +

√
17)/2]′. The fix point is unstable along v1 and

stable along v2. It is a saddle node.

Figure 3: 6.3.1. Note that initial points (2, 2), (−2,−2) show wrong results, due to numerical issues.

6.3.4

The fix points are (1, 0), (0, 0) and (−1, 0)

• For (0, 0), the Jacobian is

J|(0,0) =
[

1− 3x2 1
0 −1

]∣∣∣∣
(0,0)

=

[
1 1
0 −1

]
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The eigenvalues are λ1 = 1, λ2 = −1 and the eigenvectors are v1 = [1, 0]′ and v2 = [−1/2, 1]′.
The fix point is stable along v1 and unstable along v2. It is a saddle node.

• For (±1, 0), the Jacobian is

J|(0,0) =
[

−2 1
0 −1

]
The eigenvalues are λ1 = −2, λ2 = −1 and the eigenvectors are v1 = [1, 0]′, v2 = [1, 1]′. The
two fix points are stable nodes.

Figure 4: 6.3.4. Note that the initial point (0, 0) shows wrong results, due to numerical issues.

6.3.5

The fix points are (kxπ + π/2, kyπ), kx, ky ∈ Z.

• For (2mπ + π/2, 2nπ),m, n ∈ Z, the Jacobian is

J|(2mπ+π/2,2nπ) =

[
0 cos y

− sinx 0

]∣∣∣∣
(2mπ+π/2,2nπ)

=

[
0 1
−1 0

]
The eigenvalues are λ1,2 = ±i. It is a center.

• For (2mπ + π/2, 2nπ + π),m, n ∈ Z, the Jacobian is

J|(2mπ+π/2,2nπ+π) =

[
0 −1
−1 0

]
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The eigenvalues are λ1 = 1, λ2 = −1 and the eigenvectors are v1 = [1,−1]′, v2 = [1, 1]′. The
fix point is unstable along v1 and stable along v2. It is a saddle node.

• For (2mπ − π/2, 2nπ),m, n ∈ Z, the Jacobian is

J|(2mπ−π/2,2nπ) =

[
0 1
1 0

]
The eigenvalues are λ1 = 1, λ2 = −1 and the eigenvectors are v1 = [1, 1]′, v2 = [1,−1]′. The
fix point is unstable along v1 and stable along v2. It is a saddle node.

• For (2mπ − π/2, 2nπ + π),m, n ∈ Z, the Jacobian is

J|(2mπ−π/2,2nπ+π) =

[
0 −1
1 0

]
The eigenvalues are λ1,2 = ±i, and it is a center.

Figure 5: 6.3.5

6.3.8

(a) Denote the mass of the particle as m. The direction of x is from m1 to m2. The Newton’s
Second Law gives that

F = −G
m1m

x2
+G

m2m

(a− x)2
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Since F = ma = mẍ, we then have

ẍ = −Gm1

x2
+

Gm2

(x− a)2

(b) Rewrite the second-order ODE as

ẋ = y, ẏ = −Gm1

x2
+

Gm2

(x− a)2

and the fix point is (a/(
√

m2/m1 + 1), 0). The Jacobian is

J|
(a/(

√
m2/m1+1),0)

=

[
0 1

2Gm1

x3 − 2 Gm2

(x−a)3 0

]∣∣∣∣
(a/(

√
m2/m1+1),0)

=

[
0 1

2Gm1

a3

(√
m2

m1
+ 1

)3 (√
m1

m2
+ 1

)
0

]

The eigenvalues are λ1,2 = ±
√

2Gm1

a3

(√
m2

m1
+ 1

)3 (√
m1

m2
+ 1

)
. So it is unstable.

6.3.14

A linearization predicts that

J(0,0) =

[
3ax2 −1
1 3ay2

]∣∣∣∣
(0,0)

=

[
0 −1
1 0

]
The eigenvalues are λ1,2 = ±i, so it is a center.

But it is worth noticing that according to Example 6.3.2, linearization doesn’t work for this
problem. Instead, by transforming to polar coordinate, we have x = r cos θ and y = r sin θ. So we
have

xẋ+ yẏ = rṙ → ṙ = ar3(cos4 θ + sin4 θ)

θ̇ =
xẏ − yẋ

r2
=

x2 + axy3 + y2 − ax3y

r2
= 1 + ar2 cos θ sin θ(sin2 θ − cos2 θ)

So if a = 0, the origin is a center; if a < 0, the origin is stable; if a > 0, the origin is unstable.
Note that for a ̸= 0, θ̇ ̸= 0, so it’s spiral.
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Figure 6: 6.3.14, a = 1
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Figure 7: 6.3.14, a = 0
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Figure 8: 6.3.14, a = −1

As a general note, the linearization doesn’t work when the prediction is at the border line, for
example λ = 0 in 6.3.10 and center (ℜλ = 0) in this problem. In fact, there exists a theorem that
a point is (exponentially) stable if and only if the real part of all the eigenvalues are negative; is
unstable if the real part of some eigenvalues are positive. The linearization fails when the real part
of all the eigenvalues are non-positive, but some are 0.

A general discussion is available in the following page.

math.stackexchange.com/questions/337459/isolated-versus-non-isolated-fixed-point-2d-dynamics
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