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Homework Solutions
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4 Flows on the Circle

4.1 Examples and Definitions
4.1.1
A well-defined vector field on a circle requires V(0) = V(6 + 2kn),Vk € Z. Therefore,

sin(af) = sin(a(6 + 2k7)) = sin(ab) cos(2akm) + cos(ab) sin(2ak)
If cos(af) = 0, cos(2akm) = 1. Otherwise, divide both sides by cos(af) and we have
tan(af)(1 — cos(2akm)) = sin(2akm)

Since tan(af) can take any real value, we have cos(2akm) = 1 and sin(2akw) = 0. Therefore,
2akm = 2mm,Yk,m € Z. This leads to a € Z, i.e. a should be an integer.

4.1.2
Assume 6 € [0,27). Solving f(0*) = 0 leads to 0* = 27/3,47/3.
e For 6* =27/3, f'(0*) = —2sind

9 =27/3 = —+/3. So it is a stable fix point.

e For 0* = 4r/3, f(#*) = V/3. So it is an unstable fix point.
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Figure 1: 4.1.2

4.1.8
(a) The potential is defined as

V() = — / F(0)d0 = C — sind

where C' is a constant. Since 6 and 6 + 2k7m coincide for all integers k, we then should have
V(0) = V(0 + 2kr). Tt is easy to show that this relation is satisfied.

(b) The potential is V(0) = 6 + C where C is a constant. Clearly, V(27) # V(0), and therefore
there exists no single-valued potential function.

(c) As indicated previously, V(6) = V(0 + 2kn),V0 € [0,27), k € Z.

4.3 Nonuniform Oscillator
4.3.1
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5 Linear Systems

5.1 Definitions and Examples
5.1.1

(a) Divide & by v gives

E,z 5 = wlri+vo=0
v —wiz
Integrate both sides and we have
K% v? o
w 7 + ? — Lo

where Cj is a constant. Multiply both sides by 2 and we have

w?z? +0v° =C
where C' = 2C).

(b) 4mw?x?: potential; $mv?: kinetic energy; mC: total energy.

5.1.9

(a)

Phase Potrait Plotter 2014

Phase Potrait

gL s s e | T Wector field ||
0sl NIRITT T o Tt
aF .\\\\\\KKE‘_‘_::: 4 Start point |7
06k Q;;\\x\,n-ﬂﬁ_r,, +  End point ]
l‘\\‘\\\x-ﬁ.._,__.,,
Dal SR uus LoD ,:’;
’ k\.‘\\\\\\\-—.“-,,ff’f
D_z_“L‘.";'ﬁ.\W\\‘L;,,IIJ[Ir
1%"‘.‘\\1\\,,',.,‘
% min %step % max we, 0O Pt vy
F;f’f?.’r-, oy
2k ff.f."i’;.r;,..\\
02 AR AR E TN
_l L R
. . o NN
init init ax o6l f"f"/"/////z_,_._.._‘_\x
net /’/’/’/"/"/ﬁ.—-—ﬂ_—__,,__xx\\
(") Live onloff A et Sy
1 /j////ﬂﬂ_&_—-_p___‘,__x-.\“\
() Spread onfoff . . . . .
Insert Points/Redraw Grid
(®) Mouse onfoff -1 05 EI 05 L
X

By Svend Bertel Steffensen

Figure 2: 5.1.9



(b) Since z& = yy = —zy, we have & — yy = 0. Integrate the equation and we have

1dz?  1dy? 9 9
t—yy=0—-——=-—=0—>2"—y*=C
R 2.dt 2 dt vy

(c¢) The eigenvalues can be computed by
det(A)\I)det{ - -l } =N 1=

The solutions are \; = 1 and A2 = —1, and the corresponding eigenvectors are [1,—1]" and [1,1]’.
Therefore the unstable manifold is  + y = 0 and the stable one is ¢ — y = 0.
(d) Fromu =2 +y, v =2 —y, we have z = (u+v)/2 and y = (u — v)/2. Therefore

T=—YY=—2T > UFV=V—UU—V=—U—V—FU=—UV=U

and the solutions are
u(t) = upe ", v(t) = voe'

(e) Stable: v =0, unstable: u =10

u(t) +v(t)  uge t+wge!  (xo+yo)et + (o — yo)e'
2 2 2
u(t) —v(t)  uge™t —wgel (o +yo)e™t — (o — yo)et

5.2 Classification of Linear Systems
5.2.2

(a) The eigenvalues can be computed by solving

1-x2 -1

det(A—)\I):det{ 1 1.1

] =N —2X4+2=0
and the solutions are A; 2 =1+ ¢. and the corresponding eigenvectors are [i, 1]’ and [—i, 1].
(b) The solution is

Z(t) =c e [ i ] + coell—0t { _12 }

=cye’(cost + isint) [ i ] + cpe’(cost — isint) [ _12 ]

[ —cietsint — coet sint + icret cost — icae! cost
ciet cost + coel cost + iciel sint — icgel sint

} Filer — eo)et { cost }

—sint

cost

_ t
=(e1+c2)e [ sint



5.2.4

Solving 5z 4+ 10y = 0 and —x — y = 0 gives the only fix point (x,y) = (0,0). To determine its
stability, we have

5—2A 10

— )2 _ _
o= eats=0

det(A — AI) = det {

The solutions are A = 2 £ 4. Since RA = 2 > 0, the fix point is unstable; A = +1 # 0, so it is
spiral.
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Figure 3: 5.2.4

Note, please change Line 296-299 of PhasePlot_ 2D _GUI_SBS.m from

syms t;

syms x(t) y(t)

V = odeToVectorField(diff(x) == Master_Struct.xdot, diff(y) == Master_Struct.ydot);
f = matlabFunction(V,’vars’,{’t’,’Y’});

to

f1 = @(t,x,y) eval(Master_Struct.xdot);
f2 = 0(t,x,y) eval(Master_Struct.ydot);
f = 0(t,Y) [£1(£,Y(1),Y(2)); £2(t,Y(1),Y(2))];

because the original code may switch the coordinates. The new code is significantly slower, but it
is correct.



5.2.11

The eigenvalues of the matrix is A\j2 = 0, so A is non-semi-simple. There is a general theory
(called ”Jordan forms”) to solve this type of initial values problems. However, here we use the
naive method. First integrating ¢ yields

y(t) = yoe™

where yg is the initial value of y at time ¢ = 0. Then plug in y into the equation of & and we have
&= Az + by = \z + byge™

Again we use the variation of constant method. Solving & = Az gives © = Ce*. Assume C is a
function and we have )

Ce)\t — byoe/\t
Therefore C = bygt + Cy where Cy is a constant. We then determine the value of Cy by having
xg = (byot + Cp)eM|;—o = Cp. Hence, the solution of the system is

x = (byot + xo)ektyy = yoe

5.2.12
(a) By defining x; = I and x5 = f, we have

1 R

Ty = x2, &y = _ﬁxl 7

T2

(b) The eigenvalues at the origin can be computed by

1
:)\2+%)\+— 0

-2 1
det(A — AI)|(g,0) = det { } =
00 ~dr -§-» 0L

(0,0)

1{ R Rz 4
Moo= -4/ —
1.2 2( L 12 OL>

If R > 0, we have R\; 2 < 0, and the origin is asymptotic stable. If R = 0, ®A; 2 = 0 and it is
neutrally stable.

(¢c)If R=0, A\ o = +i/v/CL and it is a center.

If R>0, and

and the solutions are

o if R2C — 4L > 0, A1,2 are negative real numbers and it is a stable node.
o if R2C — 4L =0, A1,2 = —R/2L and it is a degenerate node.

o if R2C —4L < 0, RA\12 < 0 but A1 2 # 0, so it is a stable spiral.



