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4 Flows on the Circle

4.1 Examples and Definitions

4.1.1

A well-defined vector field on a circle requires V (θ) = V (θ + 2kπ), ∀k ∈ Z. Therefore,

sin(aθ) = sin(a(θ + 2kπ)) = sin(aθ) cos(2akπ) + cos(aθ) sin(2akπ)

If cos(aθ) = 0, cos(2akπ) = 1. Otherwise, divide both sides by cos(aθ) and we have

tan(aθ)(1− cos(2akπ)) = sin(2akπ)

Since tan(aθ) can take any real value, we have cos(2akπ) = 1 and sin(2akπ) = 0. Therefore,
2akπ = 2mπ, ∀k,m ∈ Z. This leads to a ∈ Z, i.e. a should be an integer.

4.1.2

Assume θ ∈ [0, 2π). Solving f(θ∗) = 0 leads to θ∗ = 2π/3, 4π/3.

• For θ∗ = 2π/3, f ′(θ∗) = −2 sin θ|θ∗=2π/3 = −
√
3. So it is a stable fix point.

• For θ∗ = 4π/3, f ′(θ∗) =
√
3. So it is an unstable fix point.
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Figure 1: 4.1.2

4.1.8

(a) The potential is defined as

V (θ) = −
∫

f(θ)dθ = C − sin θ

where C is a constant. Since θ and θ + 2kπ coincide for all integers k, we then should have
V (θ) = V (θ + 2kπ). It is easy to show that this relation is satisfied.

(b) The potential is V (θ) = θ+C where C is a constant. Clearly, V (2π) ̸= V (0), and therefore
there exists no single-valued potential function.

(c) As indicated previously, V (θ) = V (θ + 2kπ), ∀θ ∈ [0, 2π), k ∈ Z.

4.3 Nonuniform Oscillator

4.3.1

Tbottleneck =

∫ ∞

−∞

dx

r + x2

=

∫ π/2

−π/2

√
rdθ

cos2 θ

1

r(1 + tan2 θ)

=
1√
r

∫ π/2

−π/2

dθ

cos2 θ
cos2 θ

=
1√
r

∫ π/2

−π/2

dθ

=
π√
r
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5 Linear Systems

5.1 Definitions and Examples

5.1.1

(a) Divide ẋ by v̇ gives
ẋ

v̇
=

v

−ω2x
→ ω2xẋ+ vv̇ = 0

Integrate both sides and we have

ω2x
2

2
+

v2

2
= C0

where C0 is a constant. Multiply both sides by 2 and we have

ω2x2 + v2 = C

where C = 2C0.
(b) 1

2mω2x2: potential; 1
2mv2: kinetic energy; 1

2mC: total energy.

5.1.9

(a)

Figure 2: 5.1.9
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(b) Since xẋ = yẏ = −xy, we have xẋ− yẏ = 0. Integrate the equation and we have

xẋ− yẏ = 0 → 1

2

dx2

dt
− 1

2

dy2

dt
= 0 → x2 − y2 = C

(c) The eigenvalues can be computed by

det(A− λI) = det

[
−λ −1
−1 −λ

]
= λ2 − 1 = 0

The solutions are λ1 = 1 and λ2 = −1, and the corresponding eigenvectors are [1,−1]′ and [1, 1]′.
Therefore the unstable manifold is x+ y = 0 and the stable one is x− y = 0.

(d) From u = x+ y, v = x− y, we have x = (u+ v)/2 and y = (u− v)/2. Therefore

ẋ = −y, ẏ = −x → u̇+ v̇ = v − u, u̇− v̇ = −u− v → u̇ = −u, v̇ = v

and the solutions are
u(t) = u0e

−t, v(t) = v0e
t

(e) Stable: v = 0, unstable: u = 0
(f)

x(t) =
u(t) + v(t)

2
=

u0e
−t + v0e

t

2
=

(x0 + y0)e
−t + (x0 − y0)e

t

2

y(t) =
u(t)− v(t)

2
=

u0e
−t − v0e

t

2
=

(x0 + y0)e
−t − (x0 − y0)e

t

2

5.2 Classification of Linear Systems

5.2.2

(a) The eigenvalues can be computed by solving

det(A− λI) = det

[
1− λ −1
1 1− λ

]
= λ2 − 2λ+ 2 = 0

and the solutions are λ1,2 = 1± i. and the corresponding eigenvectors are [i, 1]′ and [−i, 1].
(b) The solution is

x⃗(t) =c1e
(1+i)t

[
i
1

]
+ c2e

(1−i)t

[
−i
1

]
=c1e

t(cos t+ i sin t)

[
i
1

]
+ c2e

t(cos t− i sin t)

[
−i
1

]
=

[
−c1e

t sin t− c2e
t sin t+ ic1e

t cos t− ic2e
t cos t

c1e
t cos t+ c2e

t cos t+ ic1e
t sin t− ic2e

t sin t

]
=(c1 + c2)e

t

[
− sin t
cos t

]
+ i(c1 − c2)e

t

[
cos t
sin t

]
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5.2.4

Solving 5x + 10y = 0 and −x − y = 0 gives the only fix point (x, y) = (0, 0). To determine its
stability, we have

det(A− λI) = det

[
5− λ 10
−1 −1− λ

]
= λ2 − 4λ+ 5 = 0

The solutions are λ = 2 ± i. Since ℜλ = 2 > 0, the fix point is unstable; ℑλ = ±1 ̸= 0, so it is
spiral.

Figure 3: 5.2.4

Note, please change Line 296-299 of PhasePlot 2D GUI SBS.m from

syms t;

syms x(t) y(t)

V = odeToVectorField(diff(x) == Master_Struct.xdot, diff(y) == Master_Struct.ydot);

f = matlabFunction(V,’vars’,{’t’,’Y’});

to

f1 = @(t,x,y) eval(Master_Struct.xdot);

f2 = @(t,x,y) eval(Master_Struct.ydot);

f = @(t,Y) [f1(t,Y(1),Y(2)); f2(t,Y(1),Y(2))];

because the original code may switch the coordinates. The new code is significantly slower, but it
is correct.
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5.2.11

The eigenvalues of the matrix is λ1,2 = 0, so A is non-semi-simple. There is a general theory
(called ”Jordan forms”) to solve this type of initial values problems. However, here we use the
naive method. First integrating ẏ yields

y(t) = y0e
λt

where y0 is the initial value of y at time t = 0. Then plug in y into the equation of ẋ and we have

ẋ = λx+ by = λx+ by0e
λt

Again we use the variation of constant method. Solving ẋ = λx gives x = Ceλt. Assume C is a
function and we have

Ċeλt = by0e
λt

Therefore C = by0t + C0 where C0 is a constant. We then determine the value of C0 by having
x0 = (by0t+ C0)e

λt|t=0 = C0. Hence, the solution of the system is

x = (by0t+ x0)e
λt, y = y0e

λt

5.2.12

(a) By defining x1 = I and x2 = İ, we have

ẋ1 = x2, ẋ2 = − 1

CL
x1 −

R

L
x2

(b) The eigenvalues at the origin can be computed by

det(A− λI)|(0,0) = det

[
−λ 1
− 1

CL −R
L − λ

]∣∣∣∣
(0,0)

= λ2 +
R

L
λ+

1

CL
= 0

and the solutions are

λ1,2 =
1

2

(
−R

L
±
√

R2

L2
− 4

CL

)
If R > 0, we have ℜλ1,2 < 0, and the origin is asymptotic stable. If R = 0, ℜλ1,2 = 0 and it is
neutrally stable.

(c) If R = 0, λ1,2 = ±i/
√
CL and it is a center.

If R > 0, and

• if R2C − 4L > 0, λ1,2 are negative real numbers and it is a stable node.

• if R2C − 4L = 0, λ1,2 = −R/2L and it is a degenerate node.

• if R2C − 4L < 0, ℜλ1,2 < 0 but ℑλ1,2 ̸= 0, so it is a stable spiral.
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