Answers for Dynamical Systems and Chaos, 12 April 2023.

I.

1. $x^{*}=0$, or $x^{*}=1 \pm \sqrt{1-r}$
2. A bifurcation occurs at $r_{c 1}=1$ in the point $x^{*}=1$
3. $f^{\prime}\left(x_{n}\right)=r-4 x_{n}+3 x_{n}^{2}, f^{\prime}(0)=r$ so unstable for $r>0$ and stable for $r<0$.
$f^{\prime}(1+\sqrt{1-r})=-2 r+2+2 \sqrt{1-r}$ so unstable for $r<1 . f^{\prime}(1-\sqrt{1-r})=-2 r+2-2 \sqrt{1-r}$ so stable for $0<r<1$ and unstable for $r<0$.
4. Saddle-node bifurcation ("out-of-the blue").
5. It is a transcritical bifurcation.
6. $x^{*}=0$ is unstable for $r>0$ (dotted line), and stable for $r<0$ (full line)
$1+\sqrt{1-r}$ is unstable for $r<1$ (dotted line), $1-\sqrt{1-r}$ stable for $0<r<1$ (full line) and unstable for $r<0$ (dotted line).

II.

7. The fixed points are the origin $\left(r^{*}=0\right)$, which exists for any μ, γ. Then $\left(r^{*}, \theta^{*}\right)=(\sqrt{\mu}, \arcsin (-1 /(\gamma \sqrt{\mu})))$ and $\left(r^{*}, \theta^{*}\right)=(\sqrt{\mu}, \pi-\arcsin (-1 /(\gamma \sqrt{\mu})))$ which exist for $\gamma>1 / \sqrt{\mu}$ or $\gamma<-1 / \sqrt{\mu}$
8. Considering that $(x, y)=(r \cos \theta, r \sin \theta)$, then $(\dot{x}, \dot{y})=(\dot{r} \cos \theta-r \dot{\theta} \sin \theta, \dot{r} \sin \theta+r \dot{\theta} \cos \theta)$, the system can be written in Cartesian coordinates as:

$$
\begin{equation*}
\dot{x}=x\left(\mu-\left(x^{2}+y^{2}\right)\right)-y(1+\gamma y) \quad \dot{y}=y\left(\mu-\left(x^{2}+y^{2}\right)\right)+x(1+\gamma y) \tag{1}
\end{equation*}
$$

which corresponds to:

$$
\begin{equation*}
\dot{x}=\mu x-y+h . o . \quad \dot{y}=x+\mu y+h . o . \tag{2}
\end{equation*}
$$

and therefore Jacobian:

$$
J=\left\{\begin{array}{cc}
\mu & -1 \tag{3}\\
1 & \mu
\end{array}\right\}
$$

with eigenvalues $\lambda=\mu \pm i$. Therefore, $r^{*}=0$ turns from a stable spiral to an unstable spiral when $\mu=0$.
9. When $\mu>0$ and $\gamma=1 / 2$ the only fixed point is $r^{*}=0$ which is unstable. The trajectories around the origin are therefore repelled outwards. We can then look for which values of r, θ the trajectories point inward $(\dot{r}<0)$. This occurs when

$$
r\left(\mu-r^{2}\right)<0 \quad \Rightarrow \quad r>\sqrt{\mu}
$$

We can then for instance construct a trapping region around the origin (excluding the origin itself) with outer radius $r=2 \sqrt{\mu}$. All the trajectories point inside the trapping region, therefore there is a limit cycle.
10. Because the fixed point loses its stability (stable to unstable spiral) and a limit cycle appears around it, it's a supercritical Hopf bifurcation.
11. $x_{n}^{*}=r x_{n}^{*}+x_{n}^{* 3} \Rightarrow x_{n}^{*}=0, x_{n}^{*}= \pm \sqrt{1-r} . x_{n}^{*}=0$ exists always, $x_{n}^{*}= \pm \sqrt{1-r}$ exist for $r<1$
12. $f^{\prime}\left(x_{n}\right)=r+3 x_{n}^{2} . f^{\prime}(0)=r$, stable for $r \in\left[r_{-}, r_{+}\right]=[-1,1]$ and unstable for $r>1$ and $r<-1$.
13. $f^{\prime}(\pm \sqrt{1-r})=3-2 r$ is unstable for $r<1$
14. The fixed point $x_{n}^{*}=0$ becomes stable for $r<1$ while the two new fixed point are always unstable, a sub-critical pitch-fork bifurcation.
15. $f^{\prime}\left(x^{*}=0\right)=-1$ so a period doubling will take place.
16. $x_{n}^{*}=0$ is stable in $[-1,1]$ (full line) and unstable outside this interval (dotted line). $x_{n}^{*}=$ $\pm \sqrt{1-r}$ are always unstable for $r<r_{+}=1$ (dotted lines).

