Answers for Dynamical Systems and Chaos, 12 April 2023.

I.

- 1. $x^* = 0$, or $x^* = 1 \pm \sqrt{1 r}$
- 2. A bifurcation occurs at $r_{c1} = 1$ in the point $x^* = 1$
- 3. $f'(x_n) = r 4x_n + 3x_n^2$, f'(0) = r so unstable for r > 0 and stable for r < 0. $f'(1 + \sqrt{1 - r}) = -2r + 2 + 2\sqrt{1 - r}$ so unstable for r < 1. $f'(1 - \sqrt{1 - r}) = -2r + 2 - 2\sqrt{1 - r}$ so stable for 0 < r < 1 and unstable for r < 0.
- 4. Saddle-node bifurcation ("out-of-the blue").
- 5. It is a transcritical bifurcation.
- 6. $x^* = 0$ is unstable for r > 0 (dotted line), and stable for r < 0 (full line)
- $1 + \sqrt{1-r}$ is unstable for r < 1 (dotted line), $1 \sqrt{1-r}$ stable for 0 < r < 1 (full line) and unstable for r < 0 (dotted line).

II.

- 7. The fixed points are the origin $(r^* = 0)$, which exists for any μ, γ . Then $(r^*, \theta^*) = (\sqrt{\mu}, \arcsin(-1/(\gamma\sqrt{\mu})))$ and $(r^*, \theta^*) = (\sqrt{\mu}, \pi - \arcsin(-1/(\gamma\sqrt{\mu})))$ which exist for $\gamma > 1/\sqrt{\mu}$ or $\gamma < -1/\sqrt{\mu}$
- 8. Considering that $(x, y) = (r \cos \theta, r \sin \theta)$, then $(\dot{x}, \dot{y}) = (\dot{r} \cos \theta r\dot{\theta} \sin \theta, \dot{r} \sin \theta + r\dot{\theta} \cos \theta)$, the system can be written in Cartesian coordinates as:

$$\dot{x} = x(\mu - (x^2 + y^2)) - y(1 + \gamma y) \qquad \dot{y} = y(\mu - (x^2 + y^2)) + x(1 + \gamma y) \tag{1}$$

which corresponds to:

$$\dot{x} = \mu x - y + h.o.$$
 $\dot{y} = x + \mu y + h.o.$ (2)

and therefore Jacobian:

$$J = \left\{ \begin{array}{cc} \mu & -1 \\ 1 & \mu \end{array} \right\} \tag{3}$$

with eigenvalues $\lambda = \mu \pm i$. Therefore, $r^* = 0$ turns from a stable spiral to an unstable spiral when $\mu = 0$.

9. When $\mu > 0$ and $\gamma = 1/2$ the only fixed point is $r^* = 0$ which is unstable. The trajectories around the origin are therefore repelled outwards. We can then look for which values of r, θ the trajectories point inward ($\dot{r} < 0$). This occurs when

$$r(\mu - r^2) < 0 \qquad \Rightarrow \qquad r > \sqrt{\mu}.$$

We can then for instance construct a trapping region around the origin (excluding the origin itself) with outer radius $r = 2\sqrt{\mu}$. All the trajectories point inside the trapping region, therefore there is a limit cycle.

10. Because the fixed point loses its stability (stable to unstable spiral) and a limit cycle appears around it, it's a supercritical Hopf bifurcation.

III.

- 11. $x_n^* = rx_n^* + x_n^{*3} \Rightarrow x_n^* = 0, x_n^* = \pm \sqrt{1-r}. \ x_n^* = 0$ exists always, $x_n^* = \pm \sqrt{1-r}$ exist for r < 1
- 12. $f'(x_n) = r + 3x_n^2$. f'(0) = r, stable for $r \in [r_-, r_+] = [-1, 1]$ and unstable for r > 1 and r < -1.
- 13. $f'(\pm\sqrt{1-r}) = 3 2r$ is unstable for r < 1
- 14. The fixed point $x_n^* = 0$ becomes stable for r < 1 while the two new fixed point are always unstable, a sub-critical pitch-fork bifurcation.
- 15. $f'(x^* = 0) = -1$ so a period doubling will take place.
- 16. $x_n^* = 0$ is stable in [-1,1] (full line) and unstable outside this interval (dotted line). $x_n^* = \pm \sqrt{1-r}$ are always unstable for $r < r_+ = 1$ (dotted lines).