Answers for Dynamical Systems and Chaos, 14 April 2021.

I.

1. Yes because $f(\theta+2 k \pi)=f(\theta) \forall k$
2. $\left(1-\cos \theta^{*}\right)+\left(1+\cos \theta^{*}\right) I=0 \Rightarrow-I=\tan ^{2}\left(\theta^{*} / 2\right) \Rightarrow \theta^{*}=2 \tan ^{-1}(\pm \sqrt{-I})$
3. The bifurcation occurs at $\mathrm{I}=0$. For $I<0$ there are two distinct fixed points, for $I>0$ there are no fixed point. The two fixed points coalesce at $I=0$. Therefore, it is a saddle-node bifurcation.
4. $f(\theta)^{\prime}=\sin \theta-I \sin \theta=\sin \theta(1-I)$ Since $I<0$ when the two fixed points exist, the terms in parenthesis is always positive and f depends only on the sign of $\sin \theta$. So the angle in the upper quadrant is unstable and the one in the lower quadrant is stable.
5. $\frac{d u}{d t}=\frac{d}{d \theta}\left[\tan \frac{\theta}{2}\right] \frac{d \theta}{d t}=\frac{1}{\cos ^{2} \frac{\theta}{2}} \frac{1}{2}[(1-\cos \theta)+(1+\cos \theta) I]=\tan ^{2} \frac{\theta}{2}+I=u^{2}+I$ which is the normal form of a saddle-node bifurcation on the line.
6. One has to solve the equation to find $u(t)=\sqrt{I} \tan (\sqrt{I} t)$ which exists if $I>0$ and tends to infinite when t approaches $T_{\text {blow }}=\frac{\pi}{2 \sqrt{I}}$
7. Rewrite the non-autonomous system into an autonomous one by setting $\dot{t}=1$. Then of course for any value of a, $\dot{t} \neq 0$.

II.

8. For a gradient system: $(\dot{x}, \dot{y})=-\nabla V \Rightarrow \int-\partial V / \partial x d x=x^{2}+a x y, \int-\partial V / \partial y d y=a x y+b y^{2} \Rightarrow V(x, y)=$ $x^{2}+a x y+b y^{2}$
9. According to theorem for gradient systems it cannot have a closed orbit, that is only a fixed point which is $\left(x^{*}, y^{*}\right)=(0,0)$.
10.

$$
J=\left\{\begin{array}{cc}
-2 & -a \tag{1}\\
-a & -2 b
\end{array}\right\}
$$

11. $\lambda_{ \pm}=-1-b \pm \sqrt{1-2 b+a^{2}+b^{2}}, \quad b=1: \quad \lambda_{ \pm}=-2 \pm a$
$-2<a<2: \tau<0, \Delta>0$: Stable node. $a>2$ or $a<-2: \tau<0, \Delta<0$: Saddle point $a= \pm 2, \tau<0, \Delta=0$: One eigenvalue $=0$ (marginal), Non-isolated fixed points. $a=0: \tau<0, \Delta>0$: Star (eigenvalues are equal $=2$).
12. $a=\sqrt{7}$ and $b=4: \lambda=-1,-9, \mathbf{v}_{\mathbf{1}}=(\sqrt{7},-1), \mathbf{v}_{\mathbf{2}}=(1, \sqrt{7})$. Stable node, both eigendirections stable.
13. $a=4$ and $b=1: \lambda=2,-6, \mathbf{v}_{\mathbf{1}}=(1,-1), \mathbf{v}_{\mathbf{2}}=(1,1)$. Saddle point, first eigendirection unstable, second eigendirections stable.

III.

14. Fixed points: $x_{n}^{*}=\frac{\pi}{2}, \frac{3 \pi}{2}$
15. $f^{\prime}\left(x_{n}\right)=1-\frac{a}{2} \frac{\sin ^{3}\left(x_{n}\right)+2 \cos ^{2}\left(x_{n}\right) \sin \left(x_{n}\right)}{\sin ^{4}\left(x_{n}\right)}$
16. $f^{\prime}\left(\frac{\pi}{2}\right)=1-\frac{a}{2}, f^{\prime}\left(\frac{3 \pi}{2}\right)=1+\frac{a}{2}\left[a_{1, \min }, a_{1, \max }\right]=[0,4],\left[a_{2, \min }, a_{2, \max }\right]=[-4,0]$
17. Superstable: $f^{\prime}\left(\frac{\pi}{2}\right)=1-\frac{a}{2}=0 \Rightarrow a_{s s}=2$. Period doubling: $f^{\prime}\left(\frac{\pi}{2}\right)=1-\frac{a}{2}=-1 \Rightarrow a_{P D}=4$
18. $x_{0}=x_{1}^{*}+\epsilon=\pi / 2+\epsilon \Rightarrow \sin (\pi / 2+\epsilon) \approx 1-\frac{\epsilon^{2}}{2}, \cos (\pi / 2+\epsilon) \approx-\epsilon$. Insert in $f: f(\pi / 2+\epsilon)=\pi / 2+\epsilon+2 \frac{-\epsilon}{1}=$ $\pi / 2-\epsilon=x_{1} \rightarrow \pi / 2-\epsilon+2 \frac{\epsilon}{1}=\pi / 2+\epsilon=x_{2}=x_{0}$. That is a two-cycle to order ϵ.
