Answers for Dynamical Systems and Chaos, 1 April 2020.

I.

1. $\dot{x}=\cot x-r \sin 2 x=\cos x\left(\frac{1}{\sin x}-2 r \sin x\right)=0 \Rightarrow \cos x=0 \Rightarrow x^{*}=\frac{\pi}{2}$ or $x^{*}=\frac{3 \pi}{2}$.
2. $f^{\prime}(x, r)=-\frac{1}{\sin ^{2} x}-2 r \cos 2 x=-\frac{1}{\sin ^{2} x}-2 r \cos ^{2} x+2 r \sin ^{2} x$. For both $x^{*}=\frac{\pi}{2}$ and $x^{*}=\frac{3 \pi}{2} f^{\prime}\left(x^{*}, r\right)=$ $2 r-1$. Bifurcations takes place at $r_{c}=\frac{1}{2}$.
3. $f\left(x^{*}, r\right)=0 \Rightarrow \sin ^{2} x^{*}=\frac{1}{2 r}$, which has solutions when $r \geq r_{c}$
4. $f^{\prime}\left(x^{*}, r\right)=-\frac{1}{\sin ^{2} x^{*}}+4 r \sin ^{2} x-2 r=2-4 r$. Below the bifurcation point $r<r_{c}, x^{*}=\frac{\pi}{2} x^{*}=\frac{3 \pi}{2}$ are both stable. Above the bifurcation point $r \geq r_{c} x^{*}=\frac{\pi}{2}$ and $x^{*}=\frac{3 \pi}{2}$ splits into two stable fixed points and become themselves unstable.
5. They are both pitchfork and super-critical.
6. $x^{*}=\frac{\pi}{2}$ is stable for $r<\frac{1}{2}$ and bifurcates into two stable fixed points for $r>\frac{1}{2}$ while it itself becomes unstable. One of the stable fixed points is just below $x=\frac{\pi}{2}$, the other is just above $x=\frac{\pi}{2}$
$x^{*}=\frac{3 \pi}{2}$ is stable for $r<\frac{1}{2}$ and bifurcates into two stable fixed points for $r>\frac{1}{2}$ while it itself becomes unstable.
As $r \rightarrow \infty$ two fixed point both converges towards π the two others toward 0 (or 2π).

II.

7. $\nabla \cdot(g(x, y)(\dot{x}, \dot{y}))=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) \cdot\left(\frac{1}{y}\left(1-\left(a x+y^{2}\right)\right), \frac{1}{x}(1-(x+y))=-\frac{a}{y}-\frac{1}{x}<0\right.$ always for $x>0, y>0$. So according to Dulac a limit cycle cannot exist.
8. Fixed points: $\left(x^{*}, y^{*}\right)=(0,0),(0,1),\left(\frac{1}{a}, 0\right),(2-a, a-1)$
9.

$$
J=\left\{\begin{array}{cc}
1-2 a x-y^{2} & -2 x y \tag{1}\\
-y & 1-x-2 y
\end{array}\right\}
$$

10. Eigenvalues: $(0,0): \lambda=1,1$ unstable node; $(0,1): \lambda=0,-1$ stable node (but marginal in one direction) ; $\left(\frac{1}{a}, 0\right): \lambda=-1, \frac{1}{3}$ (saddle point) ; $(2-a, a-1), a=\frac{3}{2}, \lambda=\frac{1}{8}(-5 \pm \sqrt{17}$ (stable node).
11. Nullclines: $y=0, x=0, y=1-x, y=\sqrt{1-\frac{3}{2} x}$. $(0,0)$ has eigenvectors $(1,0),(0,1)$ which are unstable directions. $\left(0,1\right.$ has eigenvectors $(1,-1)$ (marginal), $(0,1)$ stable. $\left(\frac{1}{2}, \frac{1}{2}\right)$ has eigenvectors $\left(\frac{1}{4}(1+\right.$ $\sqrt{17}, 1),\left(\frac{1}{4}(1-\sqrt{17}, 1)\right.$. Basically all solutions will converge to this fixed point.

III.

12. $x_{n}^{*}=2-\frac{1}{r}$. $f^{\prime}\left(x_{n}\right)=1-\frac{1}{2-x_{n}} f^{\prime}\left(x_{n}^{*}\right)=1-r$
13. $f^{\prime}\left(\left(x_{n}^{*}\right)=1\right.$ for $r_{\text {min }}=0, f^{\prime}\left(\left(x_{n}^{*}\right)=-1\right.$ for $r_{\max }=2 \rightarrow\left[r_{\min }, r_{\max }\right]=[0,2]$. Note that $x_{n}^{*} \rightarrow-\infty$ for $r \rightarrow 0^{+}$
14. Superstable: $f^{\prime}\left(x_{n}\right)=0 \rightarrow r_{s s}=1$
15. Period doubling: $f^{\prime}\left(x_{n}\right)=-1 \rightarrow r_{P D}=2, x_{n}=x_{P D}=\frac{3}{2}$
16. $x_{0}=\frac{3}{2}+\epsilon \cdot \log \left(2\left(2-\frac{3}{2}-\epsilon\right)=\log (1-2 \epsilon) \approx-2 \epsilon\right.$. Therefore for the two-cycle: $x_{0}=\frac{3}{2}+\epsilon \rightarrow x_{1}=$ $\frac{3}{2}+\epsilon-2 \epsilon=\frac{3}{2}-\epsilon \rightarrow x_{2}=\frac{3}{2}-\epsilon+2 \epsilon=\frac{3}{2}+\epsilon=x_{0}$. Thus it is a two cycle.
